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Abstract

Multivariate disease mapping enriches traditional disease mapping studies by analysing several 

diseases jointly. This yields improved estimates of the geographical distribution of risk from the 

diseases by enabling borrowing of information across diseases. Beyond multivariate smoothing for 

several diseases, several other variables, such as sex, age group, race, time period, and so on, could 

also be jointly considered to derive multivariate estimates. The resulting multivariate structures 

should induce an appropriate covariance model for the data. In this paper, we introduce a formal 

framework for the analysis of multivariate data arising from the combination of more than two 

variables (geographical units and at least two more variables), what we have called 

Multidimensional Disease Mapping. We develop a theoretical framework containing both 

separable and non-separable dependence structures and illustrate its performance on the study of 

real mortality data in Comunitat Valenciana (Spain).

1 Introduction

Areally-referenced spatial data arise frequently in epidemiological studies seeking to 

describe the geographical distribution of diseases over a region of study. Disease maps 

describe the geographic variation of disease and generate etiological hypotheses about the 

possible causes for apparent differences in disease risk. They can also be used to detect 

spatial clusters attributable to common environmental, demographical, or cultural effects 

shared by neighbouring regions. However, mapping crude rates can be misleading when the 

population sizes for some of the geographical units are small and result in excessive 

variation in the estimated rates, which make the traditional epidemiological risk estimates 

unreliable. Statistical models built specifically for analysing datasets over small areas are 

required for exhibiting clearer patterns int the geographical distribution of the diseases. They 
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allow us to borrow strength across regions by using not only the data from a given region, 

but also the data from neighbouring regions, thereby increasing the amount of information 

used for estimating the risks in each unit. Univariate models account for information on a 

single disease, while multivariate models enable us to reliably estimate the geographical 

distribution of the risks corresponding to several diseases over a region of study; see, e.g. Jin 

et al. (2007). Nevertheless, correlations across diseases may arise, for example, from 

common sets of (spatially distributed) risk factors. Multivariate models can permit modelling 

of dependence among diseases while capturing spatial dependence between regions. 

Estimating the joint spatial distribution for multiple diseases will reflect better the 

underlying risks than would be available from the analysis of any single disease separately 

using univariate models. See, for example, Dobra et al. (2011); Macnab (2011); Marí 

Dell’Olmo et al. (2014) for recent contributions in this field.

Recently, Martinez-Beneito (2013) proposed a versatile framework colligating a variety of 

multivariate disease mapping models arising from Gaussian Markov Random Field (GMRF) 

models with separable and non-separable covariance structures. Furthermore, Martinez-

Beneito (2013) meld different spatial dependence patterns with different covariance models 

between diseases, producing a large number of models as special cases. A further 

modification by Botella-Rocamora et al. (2015) accrues substantial computational benefits. 

This enables joint modelling for a larger collection of diseases (tens of them) and integrates 

information from the spatial patterns associated with each disease.

The multivariate disease mapping literature has presented models with just two factors—

disease types and geographical units. Hereafter, we will use the classical terminology factor 
and levels to denote, respectively, categorical variables and the different values that they can 

take. We are aware of only two articles dealing with more than two factors. Zhang et al. 

(2006) considered a separable dependence structure with four factors: (i) time period, (ii) 

sex, (iii) age group, and (iv) geographical unit for studying the incidence of colorectal 

cancer. Tzala and Best (2008) studied three factors: (i) disease, (ii) time period, and (iii) 

geographical unit in studying gastric cancers in Greece. Although these two papers are 

examples of multivariate studies with more than two factors, they deploy specific models 

suitable for the data in their papers, i.e. they do not set any theoretical framework for the 

joint study of geographical patterns defined by the combination of three or more factors. The 

current article seeks to generalize the framework of Martinez-Beneito (2013) and Botella-

Rocamora et al. (2015) to more than two factors (geographical units and at least two more 

factors). We refer to this as multidimensional modelling, in contrast to the more common 

two-factor multivariate modelling. We will introduce some general guidelines intended to be 

useful in multidimensional studies instead of introducing a particular model to be used in 

some specific dataset.

This paper is organized as follows: Section 2 introduces some basic tensor algebra that will 

be later used for building up the models in the rest of sections. Section 3 shows how to 

generalize the separable multivariate modelling proposal to the multidimensional case. 

Section 4 introduces non-separability into the multidimensional context and describes the 

high number of models that arise when separability is no longer assumed. Section 5 shows 

two examples illustrating multidimensional modelling in a real setting. First, we show on a 
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trivariate study example how separability can be a restrictive assumption in some cases and 

how we could use the theory introduced in the former sections to overcome the separability 

assumption. Second, we undertake a four-dimensional study considering two unstructured 

factors (Disease and Sex) and two structured ones (Geographical unit and Period). Finally, 

Section 5 contains some conclusions about the results and models developed in the previous 

sections.

2 Basic tensor algebra

Let  an Nth order tensor, or array, of dimensions (L1, L2, …, LN). The vector unfolding of 

 into the column vector x = (x1…1, x2…1, …, xL1…1, …, xL1…LN)′ is denoted by vec( ). 

Similarly, reordering the elements of a tensor into a matrix will be called matrix unfolding. 

Thus, the n-dimensional matrix unfolding of the tensor , denoted by X(n), is just the 

Ln × Πi = 1, i ≠ n
N Li matrix [x1…1·1…1 : x2…1·1…1 : … : xL1…1·1…1 : … : xL1…Ln−1·Ln+1…LN], 

where xi1…in−1·in+1…iN with “·” in the nth position is the Ln × 1 vector with entries 

xi1…in−1,j,in+1…iN for j = 1, 2, …, Ln.

More generally, let α = {1, …, N|α|} be a subset of {1, …, N} for some integer N|α| < N. The 

α-matrix unfolding of the tensor , denoted by X(α), is the (Πi∈α Li)× (Πj∈{1,…,N}\α Lj) 

matrix formed by stacking the column-vectors

{vec(x · … · iα + 1…iN
); iα + 1 = 1, …, Lα + 1; …; iN = 1, …, LN} .

The α-matrix unfolding can further be generalized to any set of indices by simply 

performing a permutation of the indices before applying the above definition. We will refer 

to the inverse process of unfolding a tensor as folding.

The n-dimensional product of a tensor  with an Ln × Ln matrix A is defined as the tensor 

 resulting from folding AX(n) into a tensor of the same dimension as . This is denoted 

using ∘n as follows:

𝒴 = A ∘n 𝒳 Y(n) = AX(n) . (1)

We also generalize the n-dimensional product analogous to how we defined the α-matrix 

unfolding as follows. Given an index set α, if A is a (Πi∈α Li)×(Πi∈α Li) matrix, then the 

tensor obtained from folding AX(α) into a tensor with the same dimensions as of  will be 

referred to as the α-product of a tensor  with A. We denote this product as A ∘α .

3 A fully-separable multidimensional proposal

Let us elucidate further with the example of a trivariate setting, which presents all the 

challenges in the multidimensional approach. Therefore, for easier exposition, we restrict 

our attention to the trivariate setting and, when required, point out any specific complexities 
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of models with more than three factors. Here, we are interested in modelling the spatial 

distribution of risks for several combinations of two factors. The first factor in this setting 

will always be the geographical unit, while one of the other two factors will usually be the 

disease (from a set of diseases) and the third factor may either be unstructured, such as Sex 

or Race, or structured in some way such as Time period or Age group. The spatial term may 

also be considered as a special case of a structured factor. Let Oijk and Eijk denote, 

respectively, the number of observed and expected outcomes for the ith geographical unit of 

study and for the specific combination of the other two factors in the study, indexed with 

subindexes j and k. In disease mapping, one customarily assumes that Oijk ~ Po(EijkRijk) for 

i = 1, …, I, j = 1, …, J and k = 1, …, K), where Rijk, the relative risk for the ith geographical 

unit and (j, k) values for the second and third factors in the study, satisfies log(Rijk) = μjk + 

θijk. We let the μjk’s represent a set of intercepts for the different combinations of the second 

and third factor (not geographic unit) of study. If so desired, these intercepts could also be 

modelled as a function of one (or more) covariate(s) in order to explain the geographical 

variability associated with it (them). Modelling θijk, the term inducing dependence between 

relative risks, in a rich, flexible and computationally efficient manner constitutes the main 

goal of multidimensional modelling and, hence, of the current article.

3.1 The fully-separable model

Let X and  be a matrix and an array of independent Gaussian random variables, 

respectively, which will be used as support for defining the θijks as some specific 

transformations of them. Those transformation will induce suitable dependence relationships 

on the relative risks.

Consider the expression in (1). This expression, when applied to the first dimension of X, 

yields A ∘1 X = AX(1) = AX. Similarly, for its second dimension, we obtain B ∘2 X = BX(2) = 

XB′. Consequently, the matrix expression AXB′ can be expressed as

AXB′ = (AX)B′ = B ∘2 A ∘1 X . (2)

Alternatively, the associative property of matrix products further yields

AXB′ = A(XB′) = A ∘1 B ∘2 X . (3)

This extends easily to produce the following for a general n-dimensional array:

vec(A ∘n 𝒳) = (ILN
⊗ ⋯ ⊗ ILn + 1

⊗ A ⊗ ILn − 1
⊗ ⋯ ⊗ IL1

)vec(𝒳) . (4)

The expression AXB′ was the key starting point in the multivariate disease mapping work 

of Martinez-Beneito (2013). It also forms the basis for our multidimensional proposal. The 

matrices A and B, when applied to a Gaussian random noise matrix X, induce, respectively, 
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dependence between diseases and within diseases into the model. Since each row of AX is a 

linear combination of the rows of X, A introduces spatial dependence among geographical 

units. Similarly, B combines information across the different columns of X and introduces 

dependence between the different diseases. This interpretation is apparent from expression 

(2)—both A and B represent identical operations on the different dimensions of the random 

matrix X.

Expression (2) also tells us how to generalize the approach in Martinez-Beneito (2013) to 

the multidimensional context. Adapting to the trivariate case, we obtain

θ = M3 ∘3 M2 ∘2 M1 ∘1 𝒳, (5)

where M1, M2 and M3 are matrices of suitable dimensions inducing dependence on θ along 

each of the three factors considered in the model and ijk ~ N(0, 1) ∀ i, j, k. Applying (4) 

successively to the previous expression, we easily obtain

vec(θ) = (M3 ⊗ M2 ⊗ M1)vec(𝒳)

and, therefore,

vec(θ) N (0, (M3M3′ ) ⊗ (M2M2′ ) ⊗ (M1M1′ )) .

In this manner, we can easily build a fully separable dependence structure for all the factors 

considered, by means of successive ∘i operations, with different values of i. Applying (2) and 

(3) to the trivariate case in (5) reveals that the order in which dependence on the factors are 

introduced in the separable case is irrelevant; they all yield identical models. Thus, for the 

separable case, the introduction of dependence on the different factors is a commutative 

operation.

Let us now turn to the definition of the Mi’s. For any of the factors considered in the 

analysis, we will distinguish between those factors having a completely unstructured 

covariance matrices (Sex, Race, Disease, …), i.e. a general symmetric positive definite 

matrix, as opposed to those having some kind of structure (time, ordered factor, …). For 

example, we may want to account for an ordinal structure for Age group or Time period and 

for the obvious spatial arrangement (neighbourhood structure) for the set of geographical 

units. For any unstructured factor, such as a set of causes for mortality, Botella-Rocamora et 

al. (2015) suggests that a reasonable modelling choice for M is to assume that each of its 

elements follow N(0, σ2) for a suitable value of σ2. On the other hand, for a structured 

factor, the dependence arising from the structure should be incorporated within the 

corresponding Mi. Here, MiMi′ is the covariance matrix for the elements of that factor and 

Mi is chosen so as to yield the desired covariance matrix. For example, in a time-structured 
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factor, such as the years within the period of study, we could be interested in considering a 

first-order autoregressive structure. The entries in the covariance matrix among years is 

given by

∑i, j = σ2 ρ ∣ i − j ∣

1 − ρ2 ,

so the corresponding Mi matrix inducing temporal dependence on the observations could be, 

for example, the lower-triangular Cholesky square-root of Σ,

σ

(1 − ρ2)−1/2 0 0 … 0

ρ(1 − ρ2)−1/2 1 0 … 0

ρ2(1 − ρ2)−1/2 ρ 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮

ρJ − 1(1 − ρ2)−1/2 ρJ − 2 ρJ − 3 … 1

. (6)

Any other decomposition of the form ∑ = MiMi′ can, in principle, be used, although the 

Cholesky decomposition is numerically more stable and relatively efficient (Banerjee and 

Roy, 2014).

Spatial dependence is introduced in a similar manner with Σ being a suitable spatial 

covariance matrix. Some attention to the size of Σ is usually warranted; otherwise, model 

fitting becomes infeasible with larger covariance matrices. As argued by Martinez-Beneito 

(2013), we can conveniently recast (5) as

θ = M3 ∘3 M2 ∘2 𝒴, (7)

where the spatial dependence on the first dimension of  = M1 ∘1  has already been 

incorporated, i.e.

vec(𝒴) N (0, IL3
⊗ IL2

⊗ (M1M1′ )) .

Unfortunately, covariance structures arising from tensor products may not be identifiable. 

For example, in the trivariate setting, M1, λM2 and λ−1M3 would lead to the same 

covariance matrix for every nonzero scalar λ ∈ IR\{0}. We need to impose constraints on 

the Mi’s to ensure identifiability, once again, distinguishing between structured and 

unstructured factors. Structured factors usually have a scalar variance term that scales the 

correlations. Fixing this scalar variance term to 1, for example, will resolve the 
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aforementioned identifiability issue. To ensure identifiability in separable models, we cannot 

have separate variance terms associated with each factor. Instead, a single global variance 

term will absorb the variability due to all structured factors.

Matters are somewhat more lenient with unstructured factors and one can restrict the 

unstructured Mi’s matrices in several different ways to ensure identifiability. We point out 

one such model, which is especially convenient from a computational standpoint. Botella-

Rocamora et al. (2015) propose to model the elements on the unstructured Mi matrices, say 

M2 and M3, as Gaussian random effects. Identifiability is guaranteed by simply setting the 

variances of these random effects to be equal, whence the entries in M2 and M3 will have 

similar scale parameters. Now matrices such as λM2 and λ−1M3, for any arbitrary nonzero 

scalar λ ≠ 1, would be discarded because they would introduce different scales.

Imposing one of these restrictions on every factor will remove the identifiability issues 

during the inference. This comment also applies to the non-separable settings we describe 

below.

4 A non-separable multidimensional proposal

The separable model discussed in the previous section is a straightforward extension of the 

separable model in Martinez-Beneito (2013) subjected to the M-based reparameterization 

proposed in Botella-Rocamora et al. (2015). However, it is not difficult to envision situations 

where separable disease mapping models are inappropriate. For example, seeking different 

between-diseases covariance matrices for males and females would lead to non-separable 

models. Spatio-temporal situations where every disease is likely to have its own temporal 

auto-regressive processes (with disease-specific parameters) is another example where 

separable models may be too restrictive. After all, why should all the disease risks share a 

common temporal dependence structure? Here, we show how tensor algebra can be 

exploited to construct non-separable multidimensional disease mapping models. We first 

extract some tools from the separable proposal and then use them to construct non-separable 

models. As earlier, we elucidate with the three-factor case.

4.1 Going beyond separability

Under separability, dependence is separately introduced for every factor by means of an n-

dimensional product of a tensor with the corresponding structured matrix. For non-separable 

models, the dependence structure for one factor will change according to the different levels 

of the other(s). For example, if space and disease are two factors, then each disease (i.e. each 

“level”) will have its own spatial covariance matrix. To fix matters, let us assume that we 

want to introduce non-separable covariance structures between the second and third factors 

in the trivariate setting.

In the separable case, dependence of these two factors was induced using (7). Following (4), 

the separable case yields
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vec(θ) = (M3 ⊗ IL2
⊗ IL1

)(IL3
⊗ M2 ⊗ IL3

)vec(𝒴) .

We introduce non-separable structures by nesting the dependence structure for one factor 

within the levels of the other. For example, we can nest level 2 into level 3 by generalizing 

the preceding expression to

vec(θ) = (M3 ⊗ IL2
⊗ IL1

)(Bdiag({M2(i): i = 1, …, L3}) ⊗ IL1
)vec(𝒴), (8)

where {M2(i): 1 = 1, …, L3} induce, for every level of the third factor, a different correlation 

structure for the second factor, in contrast to the separable case which considers the same 

correlation structure for all the levels of the third factor. Indeed, the separable case can be 

viewed as a particular case of (8), with M2(1) = ··· = M2(L3). Alternatively, factor 3 could be 

nested into factor 2 as

vec(θ) = (Bdiag({M3(i): i = 1, …, L2}) ⊗ IL1
)(IL3

⊗ M2 ⊗ IL1
)vec(𝒴) (9)

yielding a different covariance structure and, therefore, a different model.

The complexity in non-separable dependence structures depends upon the number of 

variables defining each of them and will vary as long as the numbers of levels in factors 2 

and 3 are different. Unlike in separable models, where the order of the factors is irrelevant 

because the matrix products in (5) are commutative, for non-separable models the order 

matters because the matrix products are not commutative in (8) and (9). Therefore, we can 

further generate two new models from (8) and (9) based upon the order in which the factors 

appear. Consequently, the nesting of two variables will generate four different models.

Nesting factors, as above, is not the only way to generate non-separable models. Consider 

the expressions in (8) and (9) and the models obtained by reversing the order of the variables 

in the model. These can be viewed as alternative expressions for

vec(θ) = (M(2, 3) ⊗ IL1
)vec(𝒴),

for some M(2,3) with a specific structure. This expression could also be alternatively 

formulated as

θ = M(2, 3) ∘(2, 3) 𝒴 . (10)
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An obvious way to generalize these expressions is to consider M(2,3) as an unstructured 

(L2L3) × (L2L3) matrix as opposed to the nested design. Therefore, non-separability can also 

be induced between factors as a kind of factorial design since expression (10) does not 

consider a factor to be put into the other, as in the nested design. Instead, it models any 

possible combination of the two factors at hand. In this case, the two corresponding factors 

are jointly modelled as a single factor with L2L3 levels to model their interaction flexibly. 

Therefore, factorial interactions between two factors may be considered the most flexible 

way to induce dependence on them.

Hitherto, we have only considered interactions between two factors. Interactions between 

three or more factors is treated analogously. Factorial non-separability for higher orders is 

fairly straightforward to achieve by considering the α-product of a matrix with a tensor, 

where α is a vector of length greater than two. To introduce dependence among more than 

two factors, we can nest one factor within a combination of others. One example of this 

interaction is to allow the parameter(s) controlling the spatial structure to vary, for example, 

for every combination of disease and sex. However, for three or more factors the number of 

different interactions that could be defined is much higher than for only two factors. This is 

not dissimilar to the explosion in the number of models arising in ANOVA when considering 

high-order interactions. This problem is further exacerbated because under non-separability 

the order in which the dependence structures are included into the model also matter. Hence, 

we advise caution when introducing high-order interactions within multidimensional settings 

in order to avoid a large number of models.

To summarize, multidimensional disease mapping models can be treated as a series of 

operations on an array 

Mα1
∘α1

Mα2
∘α2

⋯Mαn
∘αn

𝒳, (11)

where αi (i = 1, …, n) are subsets of {1, …, N} with one or more elements and Mαi (i = 1, 

…, n) are (Πj∈αi Lj) × (Πj∉αi Lj) matrices. If αi = (j) for any j ∈ {1, …, N} and j ∉ αi′, ∀i′ 
≠ i, then factor j will be separable with respect to the rest of factors in the model. In contrast, 

if one factor belongs to just one of the αi’s, whose length is greater than one, then it will 

have a non-separable covariance structure with regard to the rest of factors included in αi but 

a separable covariance structure with regard to the rest of factors in the model. Moreover, 

whenever non-separable dependence structures are present, i.e. αi is of length greater than 1, 

some of the operations in (11) will cease to be commutative. More precisely, if αi and αj 

satisfy αi ∩ αj = ∅ then both operations ∘αi and ∘αj will commute; otherwise they will not. 

Besides, since we have at least two different tools (nesting and factoring) for defining Mαi, 

where αi has length greater than one, the number of non-separable multidimensional models 

grows rapidly with growing numbers of factors.
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4.2 The trivariate case

We now illustrate, in greater detail, the three-dimensional setting. First, we are going to 

introduce the following nomenclature to name the different models that can be built with the 

above-described tools. We use i· to denote the model where a separable dependence structure 

is induced for the ith factor. We let i(j)· represent when factor i is nested within factor j, i.e. 

the covariance matrix for factor i varies by the levels of factor j, while ij· denotes a factorial 

covariance structure for factors i and j in the model. Thus, 1·2·3· denotes the trivariate 

model, while 1(2) · 23· represents the model where the covariance matrix for the levels of 

the first factor varies across the levels of the second factor, and the second and third factors 

are modelled using a factorial covariance structure. Finally, for any two dependence 

structures (separable or non-separable), x · y· depicts the model where the dependence 

structure on x precedes that on y. Hence, in general, the x · y· model is different from y · x·.

Multidimensional modelling can be seen as a combination of mathematical operations on an 

unfolded Gaussian array. These elemental operations for the trivariate case are shown in 

Table 1. For instance, the fully separable model is a combination of operations 

corresponding to a separable structure for the first (1·), second (2·) and third (3·) factors in 

the model. Table 1 also shows, in the unstructured cases, the matrix (matrices) involved and 

the number of variables in it (them). The different number of variables in every model 

indicates the different levels of complexity. It is also instructive to note that if, for example, 

L2 > L3, then nesting factor two within factor three (i.e. 2(3)·) yields a more complex model 

than nesting factor three into factor two. Consequently, these two nesting operations produce 

different models. Moreover, the number of parameters implied by any nesting design is 

lower than that in the corresponding factorial design. This, again, shows the added 

complexity in factorial models.

Each row of Table 1 corresponds to a different Mα ∘ α operation for different values of α and 

Mα. The last two columns of Table 1 reveal these two values, for every elemental operation 

shown. These operations can involve one, two or three factors altogether and they can induce 

separable, nested, factorial or mixed (nested/factorial) covariance structures. These 

operations impart structure to the variance in different ways. They range from the simplest 

model, which assigns structure for all three factors (the fully-separable model), to the most 

complex, which, by separate, assigns a factorial dependence structure for all three factors 

(the 123· model).

The fifth column in Table 1 depicts Mα corresponding to every elemental operation in that 

table. Note that each of these operations lead to mathematically different expressions, 

thereby yielding different covariance structures. Furthermore, for any of the rows in Table 1 

and any k ∉ α, the corresponding Mα is either a Kronecker product or the sum of Kronecker 

products of matrices with their kth component being equal to ILk. The product of a square 

matrix with a suitable identity matrix is commutative. This implies that Mα ∘ α and Mα′ ∘ α′ 
commute for any two mutually disjoint index sets α and α′.

We also remark that certain combinations of elemental operations, while mathematically 

legitimate, may lack statistical interpretability. For example, the combination of the 12· and 

23· operations is difficult to interpret because they assume that factors one and two on one 
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side and two and three on the other side are combined with as much flexibility as possible 

for every one of these pairs. In that case, it would seem much more natural to consider 

instead a 12(3)·, a 23(1)· or a 123· relationship.

Table 1 considers that factors one, two and three in multidimensional modelling are 

unstructured. However, in our context there will always be a structured factor among these—

the spatial component. We will henceforth assume that the spatial units correspond to the 

levels of the first factor. As is customarily assumed in spatial models, we specify certain 

spatial process or distribution such as Intrinsic CAR or proper CAR to induce spatial 

dependence on the geographical units. Now the operations 12·, 13·, 123·, 12(3)· and 13(2)· in 

Table 1 will no longer be sensible because they produce unstructured relationships for both 

the spatial units and the other factor, which contradicts the assumed spatial structure for 

factor one. Therefore, for structured factors in general (and not just for spatial), nesting 

appears to be the only practical way of building non-separable relationships with other terms 

in the model as it preserves the original dependence structure of factors.

However, models incorporating any factor(s) nested within the spatial factor do not seem 

reasonable either. These models would allow some covariance matrix (for any of the 

factor(s) in the model) to vary by every spatial unit. This would surely yield 

overparameterized models since the number of geographical units is typically much higher 

than the number of levels in the rest of the factors in the model. Hence, although the 

combination of operations in Table 1 could generate a large number of models, all these 

considerations will limit that quantity to some extent and, as we will see in the next example, 

that quantity will be (at least for the trivariate case) very reasonable in practice.

We conclude this section with some remarks on the practical implementation of the 

proposed models. Although Mα in Table 1 can appear to be very intricate, they are usually 

much easier to implement in practice. For example, to induce a separable covariance 

structure we simply consider the product between one of the dimensions of a Gaussian array 

and a matrix endowed with the appropriate structure. Second, if we want to nest that 

structure within another factor, for example j, the only change that we need to do is to allow 

that matrix to change for every level of the jth factor. Finally, if we wanted to introduce a 

factorial interaction between two factors, we would just have to consider every combination 

of both of them as a single factor and would have to introduce a separable covariance 

structure, as described above, for that combination of factors. These mathematical operations 

are conceptually straightforward and computationally inexpensive. In fact, for the 

illustrations in the next section, all the models (three and four-dimensional) were easily 

implemented using the Bayesian software WinBUGS (Lunn et al., 2000).

5 Two multidimensional studies on Comunitat Valenciana’s mortality data

We have carried out two separate multidimensional studies with Comunitat Valenciana’s 

mortality data. The dataset corresponds to the Spatio-temporal Mortality Atlas of Co-

munitat Valenciana (Zurriaga et al., 2010), which contain the deaths occurred in that region 

(540 municipalities) during the period 1987–2006. The first of the examples shows the effect 

of different kinds of non-separable trivariate structures, illustrating the models introduced in 
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Section 3.2. We demonstrate the inappropriateness of the separable hypothesis and illustrate 

how non-separable models, constructed using our approach, offer vastly improved fits. 

Finally, we analyse a second dataset with four factors: two unstructured factors (Sex, 

Disease) and two structured factors (Period and geographical unit).

All the models we describe below have been implemented in WinBUGS 1.4.3 (Lunn et al., 

2000) and the programs are available at http://www.uv.es/mamtnez/MultiDim.html. For each 

model, we have considered proper CAR distributions to model the spatial dependence 

among geographical units. We ran three chains for each model with a total of 15, 000 

iterations per chain. The first 5, 000 of these, were discarded as burn-in and only one of 

every 30 iterations was retained for subsequent posterior analysis. Thus, a total of 1, 002 

iterations (334 per chain) were finally saved. Improper flat prior distributions were used for 

the μ parameters (intercepts) for all the models implemented. Uniform(0,100) prior 

distributions were used for all the standard deviations of the random effects in the model. 

The upper value of these uniform distributions was intended to yield vague prior 

distributions since the random effects in the model are used in a logarithmic scale.

The different chains used for every model were run in parallel in order to speed up 

computations. That is, instead of sending all three chains in a single call to WinBUGS, we 

made three different calls (one per chain) by means of an R (R Development Core Team, 

2009) function developed for this purpose. Instead of running all three chains in a single 

core (as is the default in WinBUGS), each chain was run in a different core of the 

processor(s). This accrues considerable computational savings. Convergence was assessed 

by means of visual inspection of the history of the Deviance and a sample of variables in the 

models (models will typically contain thousands of variables) during the MCMC process.

An additional simulation study has been carried out in order to assess the performance of 

DIC for model selection in our context and the ability of some of the entertained models to 

retrieve the original variance-covariance matrix between geographical patterns. For lack of 

space the results of this study are included as supplementary material (Martinez-Beneito et 

al., 2016) to the paper which can be download also from http://www.uv.es/~mamtnez/

MultiDim.html.

5.1 A non-separable trivariate mortality study

We next consider two trivariate scenarios with factors: Geographical Unit (540 levels), 

Disease (2 levels) and Sex (2 levels). We will refer to them as factors 1 to 3, respectively. We 

embark upon two separate studies. First, we consider the joint study of Colon and Rectum 

Cancer for both sexes and, second, the study of Lung Cancer and Diabetes also for both 

sexes. For these two studies we have ran all those models arising from the combination of 

the elemental operations in Table 1. Nevertheless, some of those combinations were not 

implemented because they produce trivial or uninterpretable models. Thus, for all models 

leading to identical fits because they just permute commutative operations (such as the 1 · 2 · 

3·, 1 · 3 · 2·, 3 · 1 · 2·, . . . models), we ran just one of these equivalent choices. Moreover, we 

did not consider the nesting of the factors disease or sex into the geographical component 

since, as alluded to earlier, this does not make much sense, neither did we consider any 

factorial design involving a geographical factor because the corresponding model will miss 
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the spatial structure inherent to the geographical component. Finally, for computational 

convenience and to exploit (7), we restricted ourselves to models with the spatial factor 

entering first.

Table 2 shows the DIC, Deviance Information Criterion (Spiegelhalter et al., 2002), and the 

effective number of parameters (pD) for the implemented models and for both datasets. 

Model 1 in Table 2 corresponds to a fully separable dependence structure, Models 2–8 

modify Model 1 by nesting one factor inside other(s) and Model 9 corresponds to a factorial 

relationship for Disease and Sex. Other models are also possible combining two or more of 

the elemental operations implemented in models of rows 2–9 in Table 2. Model 10 is the 

only such model we implemented as it was expected to yield some improvement, for the 

lung cancer/disease study, as mentioned below.

For the Colon/Rectum study, the model with the lowest DIC is Model 3. This model 

accommodates spatial dependence parameters for the CAR models to vary across sexes. We 

point out that none of the models accounting for non-separability between Disease and Sex 

(Models 5–9) show notable improvements with respect to the fully separable model. Model 

10 was not run for this study because it too considered non-separability between Disease and 

Sex and was not expected to yield any improvement.

In contrast, non-separability between Disease and Sex seems to improve the fit for the Lung/

Diabetes study. One such model with the factorial structure delivers the lowest DIC. Nesting 

of the geographical component within the other factors may also yield some improvement in 

some occasions, mainly the nesting of the geographical component within diseases. 

Therefore, we have run the model incorporating a factorial interaction between Disease and 

Sex and nesting the geographical structure within diseases. However, this model does not 

perform better than that incorporating only the factorial relationship between Disease and 

Sex. The fifth column of Table 2 shows, for illustrative purposes, the computing time needed 

to run every model for the Lung/Diabetes study (for the Colon/Rectum study those times 

were basically the same). These times are very reasonable although the factorial relationship 

substantially increases computational time.

Besides model selection with DIC, we have also assessed the fit of the models implemented 

for both datasets. For this goal, we have used Posterior Predictive p-values (PP p-values) as 

introduced by Gelman et al. (1996). There, for models with Poisson data likelihoods, they 

introduced a chi-square statistic based on the assumed normality of (Oijk – (EijkRRijk))2/
(EijkRRijk). Since in our case the observed cases per unit are in general low, often zero, the 

normal approximation of the Poisson distribution would not work necessarily well, so we 

decided to make our assessment based on the deviance of the model. Specifically, let D(Oij, 
RRij) denote the deviance (–2 times the log-likelihood) for the relative risks RRij and the 

available data Oij where i and j denote, respectively, the corresponding disease and sex. 

Similarly, let Oi j
rep denote a replicate of the observed data sampled from the posterior 

predictive distribution P(Oi j
rep ∣ RRi j, Oi j). Then we used qi j = P(D(Oi j, RRi j) > D(Oi j

rep, RRi j))

as a deviance-based PP p-value to assess the fit of the models run.
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Few differences were found among models in terms of the mentioned qij s. For example, for 

the Colon/Rectum dataset, the separable model 1 · 2 · 3· yielded the following PP p-values: 

(0.25, 0.19, 0.02, 0.78) meanwhile the PP p-values for the 1 · 23· model, the model with the 

most complex interaction, were (0.23, 0.16, 0.02, 0.68). The PP p-values for the rest of 

models ranged on similar quantities. For the Lung/Diabetes data set, the PP p-values for the 

separable 1 · 2 · 3· model were (0.36, 0.18, 0.12, 0.71). Thus, no extreme PP p-value was 

observed for any of the combinations of disease and sex considered. Although the PP p-

value for Colon Cancer in Women is a bit low, maybe pointing out a slight lack of fit, this 

value is not very worrisome, mostly bearing in mind that it corresponds to the most extreme 

value out of a set of 8 PP p-values.

Table 3 shows the estimated correlations (posterior means and 80% Credible Intervals) 

between the different maps for the 1 · 23· model in both studies. Results in that table 

correspond to the model considering a factorial non-separable relationship between Disease 

and Sex. The upper and lower rows of every cell correspond respectively to the Colon/

Rectum and Lung/Diabetes studies. For the Colon/Rectum study, the fully-separable model 

yielded a posterior mean of the correlation between diseases of 0.79 (80% Credible Interval, 

[0.62, 0.93]) and a correlation between sexes of 0.92 (80% Credible Interval, [0.83, 0.99]). 

Therefore, the improvement of jointly considering both sexes in this study is higher than that 

of considering both diseases altogether.

Table 3 reveals that for the factorial relationship in the Colon/Rectum study, correlations 

between maps are mainly driven by the product of those correlations in the fully separable 

model. This explains why models imposing non-separable relationships on these two factors 

in Table 2 were performing worse. On the other hand, for the Lung/Diabetes study, 

correlation between diseases was estimated as 0.35 (80% Credible Interval, [0.23, 0.46]) and 

that between sexes was 0.62 (80% Credible Interval, [0.53, 0.71]) for the fully-separable 

model. In this case, the combination of these values does not reproduce the correlation 

matrix shown for these diseases in Table 3, which even yields a somewhat counter-intuitive 

negative correlation for Lung cancer and Diabetes in women. For these two diseases, a 

separable relationship between Disease and Sex is clearly an excessively simplistic 

assumption.

Figure 1 shows all four maps for the Colon/Rectum (upper row of the plot) and Lung/

Diabetes (lower row of the plot) studies. Results for the Colon/Rectum study correspond to 

the 1(3) · 2 · 3· model, while results for the Lung/Diabetes study correspond to the 1 · 23· 

model; these produce the best fit in their respective cases. For the Colon/Rectum study, all 

four maps appear to be very similar. The more appreciable discrepancies in them correspond 

to both different diseases and sexes. Relationships among maps are somewhat more intricate 

for the Lung/Diabetes study. Here, both maps for men share common features but the two 

maps for women are very different, perhaps the most different among all pair-wise 

comparison of maps. This suggests, again, the non-separability of Disease and Sex in this 

study.
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5.2 A four-dimensional mortality study

We now present a four-dimensional version of the Lung/Diabetes study from the previous 

Section. We consider the same dataset, dividing the whole period of study (1987–2006) into 

five different four-year periods. Hence, we have a new factor, the Time period, to include in 

the multidimensional study. This factor, unlike Disease and Sex, has a specific structure 

reflecting temporal dependence that should, ideally, be accounted for. We assume a first-

order autoregressive structure to model this factor and specify the resulting dependence 

structure using the matrix in (6).

As in our earlier experiments, we have again fitted several models and compared their 

performances using the DIC. Results are shown in Table 4. When a model engenders an 

alternative by permuting the order in which dependence is introduced to the factors, the 

alternative model is shown in the right-hand-side of the table. Since Time period has a 

specific (temporal) structure, no factorial interaction with any other factor of the model has 

been considered. These models incorporate only non-separable modifications of the fully-

separable model involving two factors. If more than one model performed better than the 

fully-separable model, such as the 1(4) · 2 · 3 · 4· and 1 · 23 · 4. models, we combined them 

into a single one in a second step of the analysis, e.g. into a 1(4) · 23 · 4 model.

Results in Table 4 are shown in the following way. Row 1 shows the DIC for the fully-

separable model, rows 2–3 show the results for models imposing non-separability for the 

new factor in the study (Time period), and rows 4–11 show the results for those models 

assuming separability for Time period. As can be appreciated, models in rows 2–3 perform 

worse than the fully-separable model. This suggests that a non-separable dependence 

structure for Time period is not appropriate. Put differently, temporal evolutions for every 

combination of Disease and Sex can be considered as first-order autoregressive processes of 

a common parameter. When time is considered a separable factor, results are quite similar to 

the trivariate case. A non-separable relationship between Disease and Sex enjoys credence 

and the spatial parameters do not seem to vary for any of the factors considered in the 

model. Moreover, no non-separable relationship between Time period and either Disease or 

Sex seems appropriate. The only two modifications substantially improving the fully-

separable models (models 1 · 3(2) · 2 · 4· and 1 · 23 · 4·) propose a non-separable 

relationship between Disease and Sex, with the factorial model being more general than the 

nested. It makes little sense to combine these two models because the factorial model is the 

most general proposal incorporating non-separability between these factors.

Regarding computing times for the models run in this study, the fully-separable model took 

780 minutes to run. This time is about 40 times higher than the corresponding trivariate 

model. We have also run the four-dimensional model without considering any particular 

temporal structure for Time period and the computing time decreased to 351 minutes. 

Therefore, the temporal structure seems to considerably slow down the MCMC sampling. 

For the remaining models, the increase from the three to the four-dimensional case is similar. 

The best-performing model, the factorial 1 · 23 · 4· model took 2,223 minutes to run. All 

models revealed excellent convergence and could surely have been run with less iterations 

than those simulated in our study.
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Models 1 · 3(2) · 2 · 4· and 1 · 23 · 4· have been selected as the most appropriate models 

based on Table 4. These two models, obviously without modelling Time period, also 

produced excellent results in the trivariate case. Hence, the results from both analyses clearly 

agree. Regarding the 1·23·4· model, which has the best DIC score in the trivariate case, the 

parameter controlling the temporal correlation of the auto-regressive process has a posterior 

mean of 0.92 (80% Credible Interval, [0.90, 0.94]), which is strongly indicative of high 

temporal dependence for all four combinations of Disease and Sex. The correlation matrix 

between every combination of Disease and Sex for the four-dimensional study (results not 

shown) is very similar to that shown in Table 3 for the Lung/Diabetes study. Again, the 

results clearly agree for both studies.

Finally, we have also included, as supplementary material to the paper, the maps of the first, 

third and fifth period of study for every combination of Disease and Sex. These maps clearly 

show temporal dependence, although they also show temporal variability for each of these 

combinations. Such a temporal coherence of maps between periods is very rewarding 

because all of them are based upon a very limited amount of information that is 

compensated for by the sharing of information between maps.

6 Conclusions

This paper has tried to set forth some theoretical bases for the development of multivariate 

disease mapping analyses involving more than one factor besides the geographical factor, 

what we have called multidimensional disease mapping studies. Very clear links can be 

drawn between the multidimensional disease mapping problem and tensor algebra-calculus 

therefore the latter offers a clear contextual framework where multidimensional methods can 

be developed, formalized and studied. In our opinion the establishment of new links between 

these two areas of research may yield new tools and very valuable ideas for the development 

of multidimensional models.

Most of the models compared in the examples produce quite similar risk estimates with 

hardly any practical difference, at least in terms of their posterior means. Maybe, as pointed 

out by a reviewer, performing quite an extensive model selection as that performed in our 

examples does not make much sense, nevertheless, we considered it convenient to 

implement and compare such a large number of models in order to illustrate the variety of 

models introduced along the paper. In practical terms, we advise users to fit fewer models 

than those considered in our examples. For example, from an epidemiological point of view, 

we do not see any relevant difference between the 1·2·3·4(2) and the 1·3·4(2)·2 models in 

Example 5.2. Since both models produce similar estimates we would advise users to fit just 

one of them, i.e. we advise to compare just models which have relevant epidemiological 

differences in their interpretations. This will keep simpler the analysis made and neither their 

interpretations nor their conclusions should be very different.

Some models have already been formulated which may be competitive alternatives to the 

framework proposed in this paper. Thus SANOVA (Zhang et al., 2009; Marí Dell’Olmo et 

al., 2014) is a method for multivariate modelling which allows to structure in some specific 

ways the covariance structure between geographical patterns. This particular feature of 
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SANOVA makes it also suitable for modelling complex dependence relationships like in 

multidimensional settings, even for structured factors (Torres-Avilés and Martinez-Beneito, 

2015). Nevertheless, SANOVA has several drawbacks in comparison to multidimensional 

modelling. First, in contrast to SANOVA, multidimensional modelling does not rely on any 

specific choice of contrasts to make specific comparisons between geographical patterns. 

This makes SANOVA results to be contrast-dependent when usually the choice of contrasts 

may be rather arbitrary. Second, to achieve such a flexibility as in multidimensional 

modelling, SANOVA models would have to include several interaction terms between the 

contrasts used. This would make their results even more contrasts-dependent and to be as 

parameterized as multidimensional models. Nevertheless, for modelling in multidimensional 

settings we acknowledge that SANOVA may be an interesting alternative to the approach 

introduced in this paper.

The models developed within this framework, despite their high complexity due to the 

difficulty of incorporating several factors within a unique dependence structure, are 

reasonably affordable from an applied point of view. All of them can be run within WinBUGS 

what makes this methodology available for a very large community of users. Moreover, 

computing times are also reasonable what makes this methodology available in practice for 

the joint study of several factors altogether. Multidimensional modelling makes also possible 

to decompose the data in smaller geographical or temporal pieces since other diseases, 

sexes, races, . . . will provide complementary information making it possible to yield reliable 

estimates in such a small units. This paper introduces some guidelines that will make 

possible some new studies on that direction and allowing to work with smaller units than 

those currently used. Finally, we find convenient to mention that the methodology 

introduced in this paper can be used beyond areal data through Gaussian Markov random 

fields. This framework could be also used for the analysis of spatial data in a continuous 

domain through Gaussian random fields, for the modelling of time or for simply structuring 

the covariance of multivariate Gaussian random effects in general. The possibilities of this 

framework in these settings have not yet been explored.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Posterior mean of the Relative Risk for every municipality. Results in the first row 

correspond to the Colon/Rectum study and those in the second row correspond to the Lung/

Diabetes study.
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Table 3

Estimated correlations matrix (posterior means and 80% Credible Intervals) between the different maps for the 

1 · 23· model in both studies. Upper/lower row of every cell corresponds respectively to the Colon/Rectum and 

Lung/Diabetes studies.

Disease 1
Men

Disease 2
Men

Disease 1
Women

Disease 2
Women

Disease 1
Men

1
1

0.73 [0.53, 0.89]
0.62 [0.49, 0.74]

0.84 [0.70, 0.96]
0.40 [0.22, 0.58]

0.63 [0.39, 0.85]
0.40 [0.29, 0.51]

Disease 2
Men

1
1

0.79 [0.60, 0.95]
0.00 [−0.22, 0.24]

0.77 [0.57, 0.94]
0.77 [0.69, 0.86]

Disease 1
Women

1
1

0.63 [0.33, 0.90]
–0.24 [−0.45, −0.02]

Disease 2
Women

1
1
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Table 4

DIC (and pD) for the models run. Rows two and three consider Time period as a non-separable factor while 

rows 4 to 11 consider it as a separable factor. Models on the right-hand-side of the table correspond to the left-

hand-side models changing the order in which dependence is induced into the factors of the models.

Model DIC (pD) Model DIC (pD)

1 · 2 · 3 · 4· 29008.7 (737.5) – –

1 · 2 · 3 · 4(2)· 29014.9 (718.7) 1 · 3 · 4(2) · 2· 29021.3 (748.9)

1 · 2 · 3 · 4(3)· 29015.7 (719.4) 1 · 2 · 4(3) · 3· 29015.4 (743.1)

1(2) · 2 · 3 · 4· 29013.5 (747.4) – –

1(3) · 2 · 3 · 4· 29008.3 (754.6) – –

1(4) · 2 · 3 · 4· 29020.3 (750.2) – –

1 · 2(3) · 3 · 4· 29003.6 (732.8) 1 · 3 · 2(3) · 4· 29007.9 (715.1)

1 · 2 · 3(2) · 4· 29019.9 (702.9) 1 · 3(2) · 2 · 4· 29002.5 (735.5)

1 · 23 · 4· 29002.5 (704.4) – –

1 · 2(4) · 3 · 4· 29018.6 (708.4) 1 · 4 · 2(4) · 3· 29018.8 (719.7)

1 · 2 · 3(4) · 4· 29028.9 (730.7) 1 · 2 · 4 · 3(4)· 29019.3 (723.9)
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